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ABSTRACT

A computer program was developed for solving equality

and inequality constrained optimization problems by the

Augmented Lagrange Multiplier method. The program was

developed specifically for use in engineering design.

The historical evolution and theoretical development of

the multiplier method is presented. Several examples are

used to demonstrate the effects of penalty parameters and

multipliers on the convergence and accuracy of the method.

Computational experience with variations to the method is

documented.

A brief literature search of the multiplier method's

application to engineering design is summarized. The method

is demonstrated with several mathematical and engineering

examples. A comparison to classical penalty methods and the

method of feasible directions was performed in each case.
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I. INTRODUCTION

Several methods currently exist which solve the function

minimization problem. While each has its advantage in special-

ized cases, no one method, including the multiplier method, is

universally more efficient and accurate than the others. The

Augmented Lagrange Multiplier method has been shown to be an

efficient and accurate method of engineering design optimiza-

tion. The multiplier method is particularly advantageous in

nonlinear equality constrained problems. It has become

increasingly popular in engineering design optimization

because of its good convergence rate and its attractive

theoretical properties.

The general nonlinear problem is defined:

Minimize f(X) (1.la)

subject to gi(X) 0 (i=1,...,£) (l.lb)

and h (X) = 0 (j=l,...,m<n) (l.lc)
2<Xi<u

and Xi  X< Xi (i=l,...,n) (l.ld)

where X is a vector of n design variables, f(X) is the ob-

jective function, g(X) is a set of Z inequality constraint

functions, and h(X) is a set of m equality constraint functions,
£. an u

and Xi and X are bounds on the design variables, referred to

as side constraints. The problem is solved by creating a

single augmented Lagrange function L(X,7), where 7 is a vector

of n Lagrange multipliers. The optimal solution (X*,T*) is

6
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found by alternately solving a series of unconstrained

minimizations followed by a simple update of the multipliers,

In this study, the unconstrained minimization is performed

by the Davidon-Fletcher-Powell method [1] utilizing a combina-

tion of the Golden Section and polynomial one-dimensional

search procedures. The Davidon-Fletcher-Powell method provides

good reliability and convergence properties. The Golden

Section search provides a reliable means of reducing the

search bounds. In most cases, polynomial interpolation

obtains a more accurate minimum than Golden Section for

sufficiently narrow bounds. The combination provided a

reliable and accurate one-dimensional search.

The multiplier method has significant advantages. As

will be shown later, the inherent numerical ill-conditioning

of more common penalty function methods is reduced in the

multiplier method. Exact solutions, not possible in penalty

methods, are also attainable. Finally, multiplier methods

are not restricted to convex programming as are pure primal-

dual methods.

There have been numerous applications of the multiplier

method in the various disciplines of engineering design

optimization. Imai [2] effectively used the method in

structural optimization. Fax and Mills [31, while limited

to equality constraints, applied the method to heat exchanger

optimization. Hedderich's [4] work in heat exchanger

7
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optimization showed the need for a method which could treat

equality constraints directly, in addition to inequality

constraints. He showed the Constrained function Minimization

Program, CONMIN [5] to be very inefficient for the equality

constrained problem. It is his work that motivated this

research of the multiplier method.

It is the objective of this research to develop an opera-

tional computer program applicable to the various disciplines

of engineering design optimization. It is not the author's

intent to develop a universally superior optimization program,

but to develop a program to be incorporated into a library

of optimization programs with flexibility in the choice of

unconstrained minimization subprograms, one dimensional search

subprograms, derivative evaluation subprograms, and conver-

gence criterion.

The theory and historical development of the multiplier

method is presented, concluded by a multiplier method algorithm

for nonlinear equality and inequality constrained problems.

Experimentation with computational aspects is then summarized.

Finally, a set of mathematical and engineering test cases

are solved demonstrating the method's effectiveness, followed

by conclusions and a discussion of results.
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II. THE MULTIPLIER METHOD

The development of the multiplier method and a brief

mathematical background is presented in this chapter.

Mathematical proofs are brief since computationalaspects

and application of the method are more the concern of this

thesis. This chapter includes historical background of the

method, a review of the Lagrange multiplier and penalty

function methods, and a development of the algorithm for

equality and inequality constrained problems. Rigorous

mathematical development of the method is given by Hestenes

[61.

A. BACKGROUND

The multiplier method was independently introduced in

1968 by Hestenes [7] and Powell [8]. Both developed an

augmented Lagrange function and solved a series of uncon-

strained minimizations followed by a simple update of the

multiplier vector. Powell showed that, if the function had

continuous second derivatives, the method would converge

locally at a linear rate while the penalty parameter

remained finite. As will be shown later, this eliminated

the inherent numerical ill-conditioning of classical penalty

function methods.

9



Extensive testing and modification has been done to the

method of Hestenes and Powell. Miele et. al. [9,10] applied

the method extensively to equality constrained problems.

Tripathi and Navandra [11] experimented with updating the

multiplier after each one dimensional search instead of after

each unconstrained minimization. Rockafellar [12,13] expanded

the method to nonlinear inequality constrained problems.

Global convergence of the method was proved by Rockafellar

[13] for convex programming problems. Bertsekas [14,15]

provides convergence proofs for the general nonlinear problem.

B. THE LAGRANGIAN

The general nonlinear equality constrained problem is

defined:

Minimize f (X) (2.1a)

subject to hi(X) = 0 (i=l,...,m<n) (2.1b)

The theorem associated with Lagrange multiplier method states

that:

"If X* affords a local minimum to f(X) subject to the

constraints h (X)=0, then there exists a unique set of

multipliers, X., (i-l,....,m) such that if

L(X,+) = f(X) + ihi(X), (2.2a)
i=l11

then
m

VL(X*,T*) = 7f(X*) + X i. h. (X*) =0 (2.2b)

and 2

2 > 0 (2.2c)

10



where V denotes the gradient of the function and L"

denotes the second derivative of L"[61.

Equations 2.2b and 2.2c are the necessary conditions for

locally constrained minima. Equation 2.2b and the feasibili-

ty condition (Eq. 2.1b) constitute the Kuhn-Tucker necessary

conditions for optimality [6]. It is assumed that f(X) and

hi (X) are second order differentiable and that the gradients

Vhi (X) are not zero at X*.

The problem can now be stated in terms of the equivalent

classical Lagrangian.

Minimize L(X,T) (2.3a)

subject to h(X) = 0 (i=l,...,m<n) (2.3b)

Assuming the existence of the saddle points of the Lagrangian

L(X,T), the condition exists:

L(X*,A) S L(X*,X*) S L(X, X*) (2.4)

The optimal pair (X*,X*) can be obtained by first minimizing

L(X,A) respect to X, then maximizing L(Xk,X) with respect to

X by update equation,

Xk+l = k + c[h i (Rk)]  (2.5)

where c is a scalar parameter (stepsize), k is the iteration

number, and Xk is the local minimum of L(xk,Xk). The procedure

is repeated until convergence is attained. This is the so

called "primal-dual" method.

Serious disadvantages are encountered in the primal-dual

method. First, the problem (Eq. 2.3) must have a locally

convex structure for the dual problem to be well defined and

11



for Equation 2.5 to be meaningful [16]. Second, a large

number of iterations are usually required to minimize L(X,\)

(Eq. 2.2a) since the ascent iteration (Eq. 2.5) converges only

moderately fast. Thus, primal-dual methods have found

application in only a limited class of problems where minimi-

zation of the Lagrangian (Eq. 2.2a) can be efficiently carried

out due to special structure, as shown by Luenberger [16], or

where the design problem exhibits a unique form, as shown by

Schmit and Fleury [171.

C. PENALTY FUNCTION METHODS

Penalty function methods have been used extensively since

the mid-1940's [18]. They are considered to be efficient for

inequality constrained problems.

Given the nonlinear inequality constrained problem:

Minimize f(X) (2.6a)

subject to gi(X) & 0 (i=i,...,Z) (2.6b)

The general exterior penalty function is defined:

F (X,c) = f(X) + c c(t) (2.7)
e i=l

where 0(t) is some scalar penalty function of the constraints

and c is some scalar penalty parameter. The most common

penalty function is the quadratic 4(t)=t 2/2. However, it may

be desirable at times to use other penalty functions. In this

study the quadratic penalty function is used such that

Equation 2.7 becomes

12



F ) +c 2 (2.8)Fe (x,c) = f(X) + Pi()(28

fgi ) '  if gi (R)  o
where P() ={ xhto , otherwise

The problem is now an unconstrained minimization of F (X).e

The convergence of the method is easily seen by a simple

numerical example.

Example 1 [2]. Minimize x such that l-x : 0.

Solution: First, examine the solution to the problem

by primal-dual method. Equation 2.2a becomes

L(x,X) = x + X(l-x) (2.9)

where X is a real non-negative number. From the stationary

conditions of Equation 2.9:

(x*,A*) = (1,1)

Solving by exterior penalty method, Equation 2.8 becomes
c p2

Fe (x,c) = x + p (x) (2.10)

1 - x, x i

where p(x) { 0 otherwise

From the stationary conditions, a minimum exists at

X'1
c

To obtain the optimal x*, a series of unconstrained minimiza-

tions are solved while increasing the penalty parameter c

toward infinity. It is apparent that as c--, x'-x*. No exact

solution is obtained and the optimum is approached from the

infeasible region.

13
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The plots of Fe (x) vs. x and f(x) vs. c are given in Figs. 1

and 2, respectively. Note in Fig. 1, as c gets larger, the

function changes more rapidly and the optimum becomes more

difficult to find regardless of the minimization technique.

This is a cause of numerical ill-conditioning inherent with

penalty methods. Figure 2 shows the asymtotic convergence

of the method.

Interior penalty functions have the advantage of

approaching the optimum from the feasible region thus

yielding a feasible solution. However, the penalty function

is discontinuous at the constraint boundaries. Also, the

same problems of ill-conditioning and slow convergence exist

as seen by Example 2.

Example 2. Solve Example 1 by the interior penalty

function method.

Solution: One form of the interior penalty function

is

~1 m 1(.1F (x) = f(x) - Ei g x  (2.11)int c i1lgix

Substituting,

F. (x) 1= (2.12)
int c l-x

It can be shown analytically that a minimum exists at

xf + 1xI =1 +1
c

It is again apparent that x'-x* only as c-.

Figures 3 and 4 illustrate that the same problems of ill-

conditioning and slow convergence exist as with the exterior

14
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penalty method. An exact solution is again not possible but

the solution achieved here is, however, feasible.

Extended interior penalty methods [19) avoid function

discontinuity at gi(X) = 0 inherent in the interior penalty

method. It is, therefore, less susceptible to ill-conditioning.

It does exhibit the same slow convergence of other penalty

methods due to the requirement to increase c to infinity.

It is for these reasons that the multiplier method is an

attractive alternative.

D. THE EQUALITY CONSTRAINED PROBLEM

The multiplier method can be perceived to be a combined

primal-dual and penalty function methods. Though they are

theoretically similar, their behavior is quite different.

It has been shown that the original equality constrained

problem (Eq. 2.1) is equivalent to the classical Lagrangian

(Eq. 2.3). Since Equation 2.3 is still an equality constrained

problem, it can be solved by the usual exterior penalty

function method. The quadratic penalty function is used so

first derivatives are continuous. Substituting Equation 2.3

into Equation 2.8:
2

A(X,T,c) = L(X,T) + 2 _ ZR2
= f(X) + Ah.X) + P() (2.13)

i=l 1=1

17



where pi(X) = h (X)

Equation 2.13 is defined to be the "Augmented Lagrange

function" for the equality constrained problem.

By the nature of penalty function methods, as c goes to

infinity, Equation 2.13 converges to the solution of Equation

2.8. Concurrently, by choosing an appropriate value of

with a suitable update formula, Equation 2.13 can be solved

by a series of unconstrained minimizations to obtain a solu-

tion to the original problem (Eq. 2.1).

The selection of X can be significant to the behavior of

the function as seen in the following two extreme cases.

First, take A.=0 for all unconstrained minimizations.1

Equation 2.13 becomes
- - c h. h (x) ( 4

A(X, ,c) = f(X) + ? (2.14)2 _~ I

which is the usual quadratic exterior penalty function

(Eq. 2.8). It has previously been shown that the function

only converges to a minimum f(X*) as c goes to infinity. It

has also been shown to be slow in converging, susceptible

to numerical ill-conditioning, and to attain only a near

optimum solution from the infeasible region.

Next, consider the case where A=X* At the minimum,i i

the stationary condition requires that

18



7A(X*,X*,c) = Vf(X*) + Xihi (X*)
i=l 11

= E: hi(X*)Vh(X*) = 0 (2.15)
i=l

The feasibility condition hi(X*)=O implies that Equation 2.13

is independent of the value of c. This leads to two important

results. First, if the optimum T* is known initially, the

solution can be obtained in one unconstrained minimization.

Second, since A(X,T,c) is independent of c at the optimum, it

is not necessary to sequentially increase c to infinity to

attain a solution. The second result implies that a finite

c can be chosen, thus avoiding the inherent ill-conditioning

of the penalty methods.

The task is now to find initial values for c and T with

sequential update formulas for each to achieve a suitable

rate of convergence. Collecting terms, Equation 2.15 becomes

Vf(X*) + (X[ +chi(X*)] Vh. (*) = 0 (2.16)

By the Kuhn-Tucker conditions, at the optimum (X*,X*).

7f(X*) + Xl 7h (X*) = 0 (2.17)

Thus, Equation 2.16 reduces to Equation 2.17 in the limit.

This implies as update formula for T such that

xk+l = Xk +chi (Rk  (2.18)

where Xk is the solution to the kth unconstrained minimization.

Proposed initially by Hestenes [6], Equation 2.18 remains the

most popular update formula for X.

19



Little experimentation has been done with choosing and

initial Ao. As shown earlier, if Ao =X the solution is

obtained in one unconstrained minimization. Obviously, the

closer To is to 7*, the more rapid the convergence. A widely

accepted practice is to choose X =0 due to the computational
c

convenience, and because no other multiplier has consistently

proven more efficient. Active and violated constraints are

immediately identified in this case since a non-zero X. can1

only occur for an active or violated constraint. A constraint

is active if the multiplier is at its optimum X#0 when X

This eliminates any extra computations to check constraint

behavior.

Before determining the choice of the initial penalty

parameter c and the update formula for c, it is first con-

venient to examine the convergence of the method which is

directly related to the choice of c. Various proofs of

linear convergence to a local minimum have been developed

[8,20,21]. Rockafellar [13] proved global convergence of the

method for convex programming. Bertsekas [14,15] provides

a rigorous proof of the method's convergence for the general

nonlinear problem. He compares the convergence of the

various multiplier methods, penalty methods, and primal-dual

methods [22]. His results for the Hestenes' [6] multiplier

method are summarized here.

Recall the assumptions made for a local minimum to exist:
-k

Assumption 1. There exists a local minimizing point X

of problem 2.1 which satisfies the second

20



order sufficiency conditions for an isolated
local minimum, i.e., f and h. are twice

1

continuously differentiable in a neighbor-

hood of Xk, the gradientsh. ), (i=l,...,m)
1

are linearly independent and there exists a

Lagrange multiplier vector 7, such that

VLjXk, k )=O and 2 L(x kk )>0 [22].

Assumption 2. The penalty function 0(t) is twice continuously

differentable in an open interval containing

zero and " (0) >0, where " denotes the second

derivative [221.

Also, assuming the Hessian matrices V2f(R), V2hi (), and the
1

second derivative q" are Lipschitz continuous, there exists

a scalar c*>0, and M>O such that for every ck>c* the function

L c(X,X) has a unique minimum (A,c). Furthermore,

RI _ I * ML - * (2.19)
c

and 1Ik+l - 7*i MII7k-X*II (2.20)c

where Xk+l =k + c h (Xk)

i 1 1

The notation 1-1 I denotes the usual Euclidean norm.

From Equation 2.20, if ck -c<- for the non-decreasing posi-

tive penalty sequence {ck} so as to ensure M/ck -, then the

sequence {Tk} converges to X* linearly. If ck goes to infinity,

IA function is said to satisfy a Lipschitz condition of

order m on the closed interval (a,b) if there exists a constant
c such that jf(x 2)-f(x)I<clx 2 -x1 1 for all values x ,x 2 on (a,b).

21A
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k -kM/c -0, and the sequence {A} converges superlinearly. From

Equation 2.19, for sufficiently large but finite c , the

sequence {x} converges to X* since {"X} converges. If c"

goes to infinity, {X I converges by the same argument.

kThe rate of convergence of {R } is represented by the right

hand side of Equation 2.19. Since { k} converges at least

linearly, {Xk} converges at least linearly. This has been

shown to be significantly faster than pure penalty or primal-

dual methods. Numerical ill-conditioning is avoided since

this linear convergence rate is achieved with a sufficiently

large finite c.

The convergence criterion of Equations 2.19 and 2.20 are

global in nature since no bounds restriction has been imposed.

No restrictions on the convex or non-convex nature of the

problem are specified as well. The global convergence of the

multiplier method is contingent upon the ability of the un-

constrained minimization method to generate a sequence {xk}

k -which are well defined local minimums to the function A(x ,7 ,c).

Naturally, the function A(xkX ,c) may have other local mini-

mums to which the unconstrained minimization method may be

attracted. Unless the unconstrained minimization method

stays in the neighborhood of the same local minimum, the con-

vergence argument is invalid and there is no assurance that

the multiplier method will perform any better or worse than

the penalty methods. It should be noted that the usual

practice is to use the last point X of the kth minimization

22



as the starting point of the (k+l)th minimization. This

generally produces sequences {Xk} which are close to the

same local minimum of A(X,T,c).

The convergence rate of the multiplier iteration (Eq. 2.18)

is linear with the convergence ratio essentially inversely

proportional to the penalty parameter c [22]. This fact is

strongly dependent on Assumptions 1 and 2. If either of the

assumptions is relaxed, the convergence rate may become

sublinear or superlinear as the following examples show.

Example 3 [22]. Consider the scalar problem minimize

x2/2 such that x=Q with an optimal solution x*=0, X*=0. In

this example Assumption 2 is not satisfied. For XAO,

0(t)=It3 /3, and c=l, Equation 2.13 becomes

1 (X1 - - 1-V£(1-4X)
2

Starting at X°=0, Equation 2.18 becomes
xk+l = 1- --4

2

The lim tk'+l)
kT (-- = 1, i.e., a sublinear convergence rate.

Example 4 [22]. Consider Example 3 where 0(t)=2V-/F/3, c=l.

Again, Assumption 2 is not satisfied. The solution to Equation

2.13 becomes

(Xl) (-l+v(T-47T) 2

4

23



Starting at X° 0 , Equation 2.18 becomes

Xk+1 X k (-1 + Vl-4X
2

It can be shown that

lim AI = 1
k- 0 k )2

hence, a superlinear convergence (order 2).

Example 5 [22]. Consider the problem, minimize xi 3/2

such that x=O. Again x*=X*=O, but Assumption 1 is not satis-

fied. For f(t)=t 2/2, c=l, the solution to Equation 2.13

becomes
i xk(x'l) = 2

and Equation 2.18 becomes

k+1 + (-1 + /1-4X
2

Again,

lim ix k-l 1 1k_*0 ( Ak ) 2

hence, superlinear convergence.

It can be shown that the convergence rate is influenced

substantially by the rates of change of the derivatives

(curvature) of the primal function p(u) = min f(X), where

u = h(X), and the penalized primal function derivatives

p(u)+c[f(u)] near u=O. The convergence is faster if the rate

of change of Vp(u) is small and the rate of change of

c[VO(u)] is large near u=O.

24
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I
In Example 3, the rate of change of Vf(u) is small near

u=0 and convergence is slow, while in Example 4, it is

large and convergence is rapid. In Example 5, the rate of

change of Vp(u) is small near u=0, thus the fast convergence.

The following example shows that in the absence of

Assumption 1, Equation 2.18 may not lead to convergence for

any c>O when is essentially quadratic.

Example 6 [22]. Consider the problem, minimize -!XI1

such that x=0 where l<p<2. For any c>0, there exists a neigh-

borhood of x =0 such that the augmented Lagrangian (Eq. 2.14)

does not have a local minimum for any X when is essentially

quadratic. This can be corrected by using '(t)=Jtjp ' + t 2/2

where l<p <o.

The two extreme cases are now examined. First, suppose

k = ,, Equation 2.19 becomes

-kk
11 L - ~*II o

The norm is always non-negative; therefore, X X. and the

solution is reached in one unconstrained minimization.

Next, letting Tk = 0 for all k, i.e., the penalty function

method, Equation 2.19 becomes

1 I < R*II 1c

In this case, xk).* only if ck -, requiring many unconstrained

minimizations and a sublinear rate of convergence.

It has been shown that the rate of convergence is directly

dependent on the penalty parameter, c. The convergence

estimates (Eqs. 2.19, 2.20) are valid for c greater than some

25



threshold value, c* which depends on (T) and the problem

data. In general, c* is unavailable and it is impossible to

know apriori the range of values of c for which Equations

2.19 and 2.20 are valid and imply fast convergence.

A penalty parameter update sequence is required to increase
k

c monotonically with each unconstrained minimization. As

c--, Equations 2.19 and 2.20 will eventually become valid.

It should be noted that large values of c can induce ill-

conditioning, making the unconstrained minimization of A(X,T,c)

difficult. On the other hand, Equations 2.19 and 2.20 indicate

faster convergence of { k} to T* for large values of c.

An update sequence is recommended whereby c is multiplied
k+1  k

by some constant y>l, i.e., c = yc . The penalty parameter

c is increased in this manner to some significantly large cmax .

Bertsekas [22] recommends y not much larger than 1 to avoid

ill-conditioning effects in the first few unconstrained mini-

mization iterations. This update scheme will be used since

it has been subject to the most testing in recent years.

The choice of an initial c requires more experimentation and

will be discussed later.

Other methods are available for updating the penalty parameter

c. Powell [7] suggests multiplying c by some constant a>l

only if the violated constraint, as measured by I Ih[X(7,c)] ],

is not decreased by a certain factor over the previous mini-

mization, i.e., c = Sc if h x(Tk,ck)]I]> y¥ h[x( k-l,ck-l] 

and ck - I = ck otherwise, where 5>1, and, y<l are some specified

26

III"&i.. .. M



scalars. This scheme generates a penalty parameter sequence

that will be constant after a certain index and will achieve

convergence by virtue of enforcing the asymtotic feasibility

of the constraints, i.e.,

lim 11h[x(Xk ck)]1 1 = 0
k -o

Another similar update scheme is to use a penalty parameter

vector such that ci is updated by the Powell method only if

the constraint hi[X(X,c)] is violated. This case of a

separate penalty factor for each constraint corresponds to

merely scaling of the constraints. A simple modification to

Equations 2.19 and 2.20 is used to prove convergence of

this case.

Finally, define a dual function A (X) for the augmentedc

Lagrange function A(X,7,c) such that

A (7) = min A(X,A,c) (2.21)c x

It can be shown that if X k(,c) is the solution to Equation
2.21, then Ac () is a twice continuously differentiable

convex function with gradient given by

7 A = ] (2.22)
Ac

where h[*Rk(i,c)] is the constraint vector (Eq. 2.1b) evaluated

at Xk. Substituting Equation 2.22, Equation 2.18 becomes

xk+l = k + ck Ac(3) (2.23)
Xc

This relation shows that the multiplier iteration (Eq. 2.18) I
is an iteration of steepest ascent for finding the maximum

of the dual function, A.(0). Equation 2.23 is equivalent to
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a steepest ascent iteration for quadratic penalty functions,

P(t) = t 2/2. The multiplier method can thus be viewed as a

primal-dual method with a limited search for the optimal

Lagrange multipliers in the dual space.

The Hestenes' multiplier method for nonlinear equality

constrained problems will not be summarized. Quadratic

penalty functions are used in this algorithm.

Step 1: Select T°=0 and an appropriate penalty param-

eter c0 >0. Set k = 1.

Step 2: Solve min A(X, 7k,c), defined by Equation

2.13. Denote the solution Rk.

Step 3: Update Tk by Equation 2.18.

Step 4: If Qk+l = -k, stop. (Xk,Tk) is the optimal

solution. Otherwise, go to Step 5.

Step 5: Set Xk = Xk+l. If ck<cmax, where cmax is
k

some significantly large number, update c

by ck+l = yck, where y is some increase

kfactor greater than one. Otherwise, c =cmax.

Set k=k+l. Go to Step 2.

Note that no assumptions or restrictions have been made

concerning the nature of the objective or constraint function.

If Assumptions 1 and 2 are satisfied, the solution will

converge to a global minimum; otherwise, only a local minimum

can be guaranteed.
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E. THE INEQUALITY CONSTRAINED PROBLEM

*The multiplier method has been shown to be theoretically

* attractive for equality constrained minimization problems.

In reality, many engineering problems involve inequality

constraints. It is, therefore, necessary to extend the

discussion of the multiplier method to include inequality

constraints.

Consider the nonLinear inequality constrained problem:

Minimize f(X) (2.24a)

such that gi(X) S 0 (i=i,...,£) (2.24b)

where X is the vector of n design variables. Introducing

slack variables, Equation 2.24b becomes

gi(X) + z2 = 0 (2.25)
2 .th

where z. is the slack variable for the i constraint. The
1

problem is now an equality constrained problem of the form

of Equation 2.1; however, the number of design variables has

increased to n+Z. The augmented Lagrangian (Eq. 2.13) becomes

A(X,Z,X,c) = f(X) + X +2

+ 
2(g(X) 2
i9 X1) (2.26)

If the number of constraints, Z is much greater than the

number of design variables, n, as is often the case in

engineering design problems, the unconstrained minimization

problem becomes sizable. The scope of the problem can,

however, be reduced by eliminating the slack variables, 
zi2

i
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The unconstrained function, A(XZTc) is first minimized

with respect to Z. For a local minimum to exist, the station-

ary conditions

- 0 (i=l,...,n) (2.27)
3Z.I

must hold. Differentiating A(X,Z,)A,c)

3A - 2X.x. + c[gi(R) + z2 ] (2zi) = 0 (2.28)

2] = 0 (2.29)

The solution to Equation 2.29 is

2
z. 01

or

2 i
z = --c - gi (X)

Since z2 < 0 is meaningless, the solution becomes
1

2 t
zi = max [0, -giR) - (2.30)

Equation 2.30 shows that z. is no longer an independent varia-1

ble. From this equation it is observed that if gi(X) is a

critical constraint, zi = 0. If gi(X) is non-critical, zi >0.

Therefore,

i( + z? = max [gi(X) ' - ] (2.31)

With the slack variables eliminated, the augmented Lagrangian

becomes

-2
A(xIX,c) = f(R) + [Xii +

where = max [gi ( ) ' (2.32)
1 C
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This is referred to as Rockafellar's augmented Lagrange

function. Note that A(X,A,c) has continuous first derivatives

with respect to c, but discontinuous second derivatives at

gi(X) = -X/c. This preludes the use of second order

methods, i.e., Newton's method, for unconstrained minimization.

From Equation 2.31, Hestenes' update formula for T for

the inequality constrained problem becomes

k+l -k+cg~k)]( 3
Xi = max [0, k + c -(

The algorithm for Hestenes' multiplier method is easily modi-

fied to include inequality constraints by adding Equations

2.32 and 2.33 to steps 2 and 3, respectively. Note that

since the inequality constrained problem is transformed to

an equivalent equality constrained problem, the convergence

properties are identical.

Example 1 can now be solved by the multiplier method.

Example 7 [2]. Minimize x such that l-x<0.

Solution: Equation 2.32 becomes

A(x,X,c) = x + c t1l-x)2 + 1(1-x), if l-x 0
2

X ,otherwise

Applying Hestenes' algorithm with X =0 and c =1, the augmented

Lagrangian becomes

A°(x,0,1) - x + 1 (l-x)2 , if l-x>0

0, otherwise
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This has a solution x°=0. Updating A by Equation 2.32,

A- max [O,Ao+cg(xl)]

= max [0, 0 + I(i)] = 1

With Ai=l and c =1, the next unconstrained minimization of

A(x,X,c) becomes

A (x,l,l) = x + (i-x) 2/2 + (l-x), if l-x a 0

- 1/2, otherwise

The solution becomes x' 1 1. Updating X,

X2 = max [0,i + c g (x )  ]

= max [0, 1 + 1(0)] = 1

Since X 1-X, stop the calculation. The optimal solution is

(x*,X*) = (i,1).

Note the convergence of the method even for a constant penalty

parameter c.

The functions A° and A1 are plotted in Fig. 5, and the

objective value vs. c is plotted in Fig. 6. Several facts

are evident from this example.

1. A solution is obtained in a few unconstrained minimi-

zations.

2. Each unconstrained problem is a smooth curve. Thus

ill-conditioning is avoided.

3. Convergence is not asymtotic and an exact solution is

attainable.

4. With an initial Lagrange multiplier of zero, the

solution is obtained from the infeasible region.
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A0  A1  A
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3-1

4. " optimal point

I I X

Fig. 5. Augmented Lagrangian Function

f

exact objective value

c

Fig. 6. Convergence of Augmented Lagrangian Function
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5. The optimal Lagrange multiplier is obtained.

6. Any starting point is possible.

The method, therefore, shows attractive theoretical features

over pure penalty or primal-dual methods.

The multiplier method algorithm is now summarized for the

nonlinear equality and inequality constrained problem:

Minimize f(X)

such that gi(X) < 0 (il,...,Z)

and h. (X) = 0 (j=z+l,...,Z+m)J

Algorithm:

Step 1. Choose an initial Lagrange multiplier A0 = 0 and

an initial penalty parameter c0 > 0.

Step 2. Solve the unconstrained minimization problem

Min A(X,X,c) = f(X)

4m c 2

+Z 2

+ Z [X h + c.i] W

~j=Z+l

$A

where pi = max [gi c

Step 3. Update the Lagrange multipliers, A by

-k .I kl  k + c max[gi~x) ci = Al+cmx~.X) --.. ] (i=l,..., Z)

k + l = . + c h (Rk) (j=m+l,...,m+Z)

Step 4. If Tk = Tk+l, stop. The optimal solution is

(R*, *) = (Xk,Xk). Otherwise, go to Step 5.
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Step 5. Set = k+l Update the penalty parameter c by

k+l k
C =YC•

k+l k esstc k = k + l "

If c > C max set c = Cmax ' else set ck =

Set k = k+l; go to Step 2.

This is the theoretical algorithm used in the multiplier

method. Minor variations are described in the next chapter

which are designed to improve the computational efficiency,

reliability, and accuracy of the method.
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III. COMPUTATIONAL ASPECTS

The effectiveness of the multiplier method is dependent

upon the accuracy of the unconstrained minimization, choice

of Lagrange multiplier update formula, penalty parameter,

the form of the penalty function, and the objective and

constraint functions themselves. The theoretical effect of

the Lagrange multiplier and penalty parameters on the method's

convergence rate was described in Chapter II. The require-

ment that the objective and the constraint functions satisfy

Assumptions 1 and 2, listed in Chapter II.D, has also been

established.

This chapter will examine the effects of the Lagrange

multiplier and penalty parameter from a computational view-

point. As stated earlier, the penalty function is quadratic

throughout this discussion. The computational aspects of

the unconstrained minimization program and associated one-

dimensional search subprograms are first examined.

A. THE UNCONSTRAINED MINIMIZATION PROBLEM

A sequence of unconstrained minimizations is required in

obtaining a solution by the multiplier method. Of the many

unconstrained minimization techniques available, the Davidon-

Fletcher-Powell [DFP] method [1] was selected because of its

accuracy and rapid convergence. Figure 7 compares the DFP
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COMPARISON OF UNCONSTRAINED MINIMIZATION METHODS

25 Banana Function Minimization

F(x) = lOx 4- 2 2 2x l2OXlX2+1 x2 +xl-2X1 +5

F(x) Itr Nfun

20 (1) Steepest Descent 4.01913 18 262

(2) Fletcher-Reeves 4.00668 14 211

(3) CONMIN 4.00294 14 86

(4) DFP 4.0208 8 99

15

2 1 
-(3)

8

ITERATION

Fig. 7. Comparison of Unconstrained Minimization Methods

37

* ~ a



method to the methods of steepest descent, Fletcher-Reeves

conjugate gradient method developed as part of this study,

and the Fletcher-Reeves method contained in the CONMIN

program for the extremely ill-conditioned "banana" function.

Note the DFP method converges in fewer iterations than the

other methods with little or no loss of accuracy.

To solve the general unconstrained minimization problem,

it is necessary to first calculate a search direction, S,

initially the direction of steepest descent. A one-dimensional

search is then used to find the minimum of the objective

function in the search direction, S. The one-dimensional

search computes a scalar, a* which minimizes the function

f(Xk-1 + LkSk The new X-vector associated with the function

minimum becomes

Xk = Xk-i + k Sk

A new search direction is calculated, and the iteration is

repeated until a specified convergence criteria is satisfied.

The algorithm for the DFP method is described as follows

for the general unconstrained minimization problem:

Step 1. Select an initial point X and an initial posi-

tive definite symmetric matrix, Ho = I (identity

matrix). Set k-l.

Step 2. Calculate the gradient, Vf(X ), and set

So = - Ho Vf(Xo
0 H0 VX0)

Step 3. Compute Xk = Xk-1 + a* S
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where a* minimizes f(Xk-i + (ASk) i.e., y is

the solution to the one-dimensional search.

Step 4. Computer Hk+ 1 = Hk + A-Bk

where AF = Vf(Xk) - Vf(Xkl)

AX= X k Xk-1 U k

Ak - AxAT
Ak ARTAp

- (HAF) (HAP)T
k APT HAP

Step 5: Compute Sk+ 1 =Hk+I Vf k , set k=k+l, go to Step 3.

The basic algorithm is modified to provide (1) scaling of the

variables, (2) appropriate update and resets, and (3) a suita-

ble termination criterion.

A feature is added which normalizes the search vector

such that
= Sk

NORM -§ lkmax

For excessively ill-conditioned problems, pre-scaling the

variables may also be required.

Resets and updates of the vector, S and the matrix, H,

are incorporated to prevent method breakdown from round-off

error and other instabilities. The positive definiteness

of H is preserved in theory only if a* provides a true
-T -k

= 0 Teudt fHi
minimum point, i.e., VFk S 0.

k+1 kThupaeoHis

therefore, skipped if 7Fp+ Sk> F , H#I, and the update
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was not skipped on the previous iteration. A tolerance

value, c = 0.01 was co-putationally found to provide a good

update criteria with negligible effect on the convergence

side.

Two checks were made on S to insure a valid search

direction. Note first that if H=I, the search direction is

that of steepest descent. Now at iteration k, if Sk.?fk(X)>O,

the search direction will not reduce the objective and a new

search direction is found. Second, if at the end of the

one-dimensional search f(Xk+l)>f(Xk), the function is ob-

viously not a minimum and a new search direction is found,

In each case, the H-matrix is reset to identify, I, and a

search in the directionof steepest descent is performed.

Finally, to maintain stability of the H-matrix, it is reset

to the identify matrix every NDV+l iterations, where NDV is

the number of design variables.

The method is terminated when the relative or absolute

difference of the objective function is less than 0.001 for

two consecutive iterations or when a preassigned maximum

number of iterations is exceeded. The somewhat strict

convergence criterion was chosen since the performance of

the multiplier method is highly dependent on an accurate

unconstrained minimization.

The DFP method has been shown to be a reliable first

order method with quadratic convergence. It has one
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additional feature in that it provides a good approximation

to the Hessian matrix,

,23f (X)
H ~ (R

3R2

Thus, the method provides many of the advantages of a second

order, Newton type method, without the tedious calculation

of second derivatives.

Finally, the DFP method requires subprograms to calculate

gradients and perform the one-dimensional search. Gradient

calculation was done by the first forward finite difference

method. While a central difference method would improve the

accuracy of the calculations, the first forward finite

difference method with a step size of 0.01 has provided

acceptable results in experimentation thus far. Discussion

of the one-dimensional search subprogram follows in the next

section.

B. THE ONE-DIMENSIONAL SEARCH

A combination of the Golden Section method and polynomial

interpolation was used for the one-dimensional search. The

one-dimensional search calculates a scalar, a* which minimizes

the function, f(Xk-1 + a kSk) It has been shown that the

accuracy of computing a k is critical to the performance of

the unconstrained minimization subprogram. The Golden Section

method was used because of its reliability and accuracy. The

method is, however, less efficient than polynomial interpola-

tion methods in many cases. The Golden Section method
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converges linearly while polynomial methods have no guaranteed

rate of convergence. It may also require many function evalua-

tions per iteration while polynomial methods require few.

The Golden Section rethod is based on a Fibonacci search

[16] which yields a sequence of intervals of uncertainty whose

widths tend to zero faster than any other method. Given upper

and lower bounds, xu and x, where x denotes the scalar, a,

in Equation 3.1, two interior points, x1 and x2 are found such

that

xu - x2 = x1 - x

and the ratio

x2 _

- - (1 + V5)2= 1.61803
x1

This is the Golden Section number. The interior points, x1

and x2 are defined as

x = (1 - t)xL + TX

x 2 = TxZ + (1 - T)xu

where T = (3-/5)/2 = 0.38197

The bounds are revised by a simple update routine and one new

interior point is calculated at each step. The process is

continued until a given relative convergence tolerance, E,

is satisfied. The algorithm for the Golden Section search

is given in Appendix A.

The relative convergence tolerance, £, is defined

= A/(X -x
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Recognizing that the interval is reduced h-;, the fraction, T

(38 percent) each iteration, the maximum number of function

evaluations, N per iteration is calculated

(-)N-3£= (l-T)N

or N = ln(s)/ln(l-T) + 3

= -2.078 in(E) + 3

Note that by defining 6, a fixed number of function evalua-

tions are performed each iteration. If the absolute conver-

gence tolerance, Ax were specified, the number of function

evaluations will vary each iteration. Experiments have

shown an absolute convergence criteria to yield slightly

better accuracy with nearly the same number of function

evaluations. Therefore, an absolute convergence criteria

was specified to give the same or better efficiency than

the relative criteria and with improved accuracy.

The Golden Section method requires a logical guess to

the first xu such that xu and xZ bracket the minimum.

Selection of xu was performed such that if more than two

guesses were required, the last three points chosen would

yield the values x., x1 , and xu. This provided a smaller

initial bound than if the original x£ was used and also

saved one function evaluation since x1 was already found

for future calculations.

Finally, a cubic approximation was performed using the

last four points from the Golden Section method. A better
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minimum was found in almost every case at the cost of only

one additional function evaluation.

C. THE MULTIPLIER METHOD

Experimentation with the multiplier method involved in-

vestigating the effects of the penalty parameter, c, the

update factor, Y, and the update formula for the multipliers,/. It was desired to compute these parameters internally if

possible, such that the method's performance would be inde-

pendent of the problem. This is necessary to provide a

method which can be used simply and reliably for many

engineering applications. Effects of scaling, variable

bounds, and perturbed constraints were not investigated but

will be discussed briefly for completeness.

The choice of the initial penalty parameter, c° , can

have significant effect on the efficiency of the multiplier

method. No universally acceptable method has been found to

select an initial penalty parameter, c0  Two methods have

been found to provide good initial estimates and are recom-

0mended here: (1) choose the initial penalty parameter, c

of the same order ot magnitude as the initial objective

function, or (2) choose the initial penalty parameter such

that 17fl=clVgmaxI. The second method requires the gradient

of each constraint which is not directly available in the

current program. Both methods have provided acceptable

results for the examples tested. They cannot guarantee a

reasonable convergence or a reliable answer in all cases.
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greater than 1. A y=2 worked well in all the cases tested.

Reasonable success was achieved with y=5, but caution should

be used since instability and ill-conditioning occurred when

c was chosen too large. Bertsekas' recommendation of y>l

to a maximum of y=2 appears to be adequate in most cases.

The maximum penalty parameter, cmax is not as critical

to problem stability as the initial c° . It was noted that

ill-conditioning does occur for cmax too large. A good

guideline is to choose c max of order five to six times that

of co. If ill-conditioning occurs, it will be necessary to

lower cmax' c0 or both.

Choosing an initial set of multipliers, To other than

zero was not investigated. The convenience of identifying

active and violated constraints without additional computa-

0tions when X1=0 tends to overshadow any computational advan-

tage which may be attained by choosing a non-zero initial

multiplier.

Normalization of the constraints is necessary in the

function subprogram to avoid breakdown of the multiplier

method. Scaling may be required for extremely ill-conditioning

problems. Various scaling methods exist, all of which

provide some means making the variables, objective, and

constraints (or their gradients) equal to or near the same

order of magnitude.
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At present, the algorithm treats all side constraints

or bounds as additional problem constraints. Treating side

constraints directly can greatly improve the computational

efficiency, as well as simplifying problem programming.

Ragsdell [23] has shown success in treating variable bounds

(side constraints) directly but does not offer any theoretical

justification. Further research on direct treatment of side

constraints is required.

The multiplier method often converges computationally to

a solution that is slightly infeasible. This may not be

desirable from the practical point of view. Imai [2] con-

sidered the following perturbed problem:

Minimize f(X,T)

such that gi(X,X) L - e (e>O, i=l,...,m)

where E is some small positive number. The constraints are

pushed slightly into the feasible region, so the function

will terminate in the feasible region.

The augmented Lagrangian, L becomes

L = f + c [X.i + ci 2 (3.2)

2 'P

X.
where i = max [i +  l

i c

Setting E=O, Equation 3.2 reduces to the original Lagrange

function for the general inequality constrained problem.

Solutions obtained with E=O are only slightly infeasible,
-3

i.e., gi=+10 ; therefore, accuracy of the original Lagrange

function was acceptable even though slightly infeasible.
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Finally, a termination criteria was chosen such that

the relative of absolute change in the objective function

was less than 0.001 for three consecutive iterations, or

if a preassigned number of iterations was exceeded. This

was chosen since convergence of the objective function is

of more interest than convergence of the multipliers, \.
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IV. COMPUTATIONAL EXPERIENCE

The multiplier method was used to solve five test cases.

Three mathematical examples were used to demonstrate the

method's computational performance as compared to other methods.

Two engineering examples were then solved to show the applica-

tion of the multiplier method in engineering design optimiza-

tion. Results of the multiplier method computations are given

in Table I. Table II shows a comparison of the multiplier

method to other optimization methodsfor each case.

A. CASE 1: THE CONSTRAINED ROSEN-SUZUKI FUNCTION [5]
2 2 2 2

Minimize f(x) = xl-5xl+x 2-5x2 +2x 3 -21x 3 +x 4 +7x 4 +50

2 2 2 3 2  -840

such that gl(x) = X2+X+2-2X3+ x -8 = 0

2 2 2 22(x)= xl-x+2x 2 +x 3 +2x 4 -x 4 -10 0

2 12 2 -g(x) = 2xl2+2xl+x 2_X2+x-_X4-5 =0
g3 ( 2 1 +2 1 X 2  2 3 4-

This problem was solved for two individual cases. Case 1A

solves the problem with constraints gl(x) and g3(x) as equality

constraints. Case lB treats these two constraints as in-

equalities. The solution to each case is given in Table I.

This problem demonstrates the method's ability to solve

equality constrained problems directly with greater accuracy

and efficiency. As seen in Table II, the method performs
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no better than the exterior penalty method or CONMIN for the

inequality constrained problem. However, when the equality

constraints are treated directly, the multiplier method shows

significant improvement. It should be noted that CONMIN uses

a polynomial interpolation one-dimensional search, which is

significantly more efficient than the Golden Section search

in many cases. Using the polynomial search should make the

multiplier method more efficient, if reliability can be

preserved. The reliability of the Golden Section search made

it the more desirable choice in the development of the method.

B. CASE 2. A SIMPLE QUADRATIC FU TNCTIC, [23]

2
Minimize f(x) = 4xl-x 2 -12

such that gl(x) = 25-xI-x 2 = 0

g2 (x)= -lox2+x 21o 2 +-10l+X-1x 2 +x2 +34 0

g3 (x)= -x I 1 0

g 4 (x) -x2 
< 0

This case was chosen as a comparison to the Sequential

Unconstrained Minimization Technique, SUMT [23], using an

interior penalty function method. The problem solution is

given in Table I. From Table II, it can be seen that the

multiplier method is comparatively accurate to the SUMT

method.
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C. CASE 3: THE PAVIANI FUNCTION [23]

Minimize f(x) = 1000-xl-2x2 x2 x x x 2X3

2 2 2
such thatgl(x)= xI+X 2 +x3-25 = 0

92(x)= 8x +4x 2+7x 3-56 = 0

g3 (x) -xI  0

g4 (x) -x2  0

g5 (x)= -x3  0

In this case, it is interesting to note that even though

the accuracy and efficiency is comparable, the penalty method

required a larger penalty parameter, c than the multiplier

method. This is a common point and shows the multiplier

method's ability to avoid ill-conditioning by efficiently

and accurately obtaining a solution with a finite c.

D. CASE 4: THE THREE BAR TRUSS PROBLEM

As a simple structural design problem, the three bar truss

in Fig. 8 was considered. The problem was to determine the

areas Al, A2, A3 to minimize the structure weight, W. The

design was subject to constraints -15000<a. .<20000 psi where
iJ

J is the stress in the truss member, i under load condition,

j. An additional geometric constraint of Al=A3 was imposed

to maintain symmetry.
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THE THREE BAR TRUSS PROBLEM

:iAl A2 A3

H

P2 P

MATERIAL: p = 0.1 lb/in
3

E = 106 psi

GEOMETRY: H = 10 inches

LOADS: P1  P2 = 20,000 lbs.

STRESS LIMITS: -15,000 < aij < 20,000 psi

INITIAL AREAS: Al = A2 A3 = 1.0 sq.in.

FIGURE 8.
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E. CASE 5: CANTILEVER BEAM PROBLEM

A cantilever beam with base, B, and height, H, variable

over the length, L, was optimized to find the minimum volume.

The beam, as seen in Fig. 9, was divided into five sections.

The following constraints were imposed: (1) bending stress,

a in each section was not to exceed ±20000 psi. (2) deflection,

S under the load was not to exceed ±2.0 inches, and (3) height

to beam ratio, (H/B)<30. Additional side constraints were

also imposed on the base and height. Separating the beam

into five sections expanded the problem to one of ten design

variables and 37 inequality constraints. The problem was

solved by the multiplier method with c=1000 and '=1. The

solution is given in Table I, with a comparison to the exterior

penalty method and CONMIN in Table II. It should be noted

that the exterior penalty method did not obtain a solution

due to numerical ill-conditioning and stability problems.

F. SUMMARY

For the cases involving equality constraints, the advan-

tages of the multiplier method over penalty methods and

CONMIN has been shown. The multiplier method has proven to

be a suitable alternative to the other methods tested for

both equality and inequality constrained problems. While

the method may have worked well for the cases tested, it

cannot be guaranteed to be the most efficient, if even the

most accurate, in all cases. The dependence of the multiplier
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THE CANTILEVER BEAM PROBLEM

A P=l0000 lb.

Section A-A

j jI H

The beam is broken into five segments of equal length
and each segment is governed by two design variables for
a total of ten design variables.

Design requirements.

MATERIAL: E = 30xl10 6 psi

GEOMETRY: Total length, L = 200 inches

l <H.i < 30 inches i= 1,5

0.5 < B. < 5 inches i = 1,5

H./B. < 30 i = 1,5

ii/1 1

STRESS LIMITS: (at the left end of each segment)

i I 320000 psi i 1,5

FIGURE 9
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method on internal programming parameters, c and A, may

even make the method less attractive in some cases to other

optimization methods.
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TABLE I

MULTIPLIER METHOD RESULTS

Case 1A: The Equality Constrained Rosen-Suzuki Function

Initial Obj = 31.000

xT = (1.0, 1.0, 1.0, 1.0)

G = (-4.0, -6.0, -1.0)

Final Obj = (6.0075

RT = (0.01607, 1.0285, 1.9799, -1.018)

-T = (-0.00515, -0.8896, 0.004387)

Theoretical Optimum

Obj = 6.0000

-T = (0.0, 1.0, 2.0, -1.0)

GT = (0.0, -1.0, 0.0)

Case IB: The Inequality Constrained Rosen-Suzuki Function

Initial Obj = 31.000

XT = (1.0, 1.0, 1.0, 1.0)

GT = (-4.0, -0.0, -1.0)

Final Obj = 6.1178

-T = (0.03206, 1.0334, 1.9509, -1.054)

aT = (-0.1166, -0.8921, -0.1237)

Theoretical Optimum = Same as above
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TABLE I (contd)

Case 2: A Simple Quadratic Function

Initial Obj = -9.0

R = (1.0, 1.0)

T = (23.0, 16.0, -1.0, -1.0)

Final Obj = -31.989

T = (1.0019, 4.8986)

-TGT = (-0.0017, -0.192, -1.026, -4.894)

Theoretical Optimum

Obj = -32.000

-T = (1.0, 4.8990)

GT = (0.0, 0.0102, -1.0, -4.899)

Case 3: The Paviani Function

Initial Obj = 976.0

RT = (210, 2.0, 2.0)

GT = (-13.0, 2.0, -2.0, -2.0, -2.0)

Final Obj = 961.79

RT = (3.289, 0.2403, 3.7599)

GT = (0.0035, -0.0048, -3.286, -0.241, -3.761)

Theoretical Optimum

Obj = 961.715

,RT = (3.512, 0.217, 3.552)

GT = (0.0, 0.0, -3.512, -0.217, -3.552)
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TABLE I (contd)

Case 4: The Three Bar Truss

Initial Obj = 3.8284 lbs.

XT = (1.0, 1.0, 1.0) in.

aii 14142.2 psi

021 = 8284.2

°31 = -5858.0

12 = -5858.0
22 = 8284.2

032 = 14142.2

Final Obj = 2.639

-T = (0.7885, 0.4086, 0.7883)

Cl1 = 20001.

21 = 14636.

31 = -5364.8
21 = -5364.8

022 = 14636.

32 = 20005.

Theoretical Optimum

Obj = 2.632

XT = (0.781, 0.424, 0.781)

a11 and 032 are active constraints.
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TABLE I (contd)

Case 5: Cantilever Beam

Initial Obj = 9000 cu. ft.

HT = (15.0, 15.0, 15.0, 15.0, 15.0)

BT = (3.0, 3.0, 3.0, 3.0, 3.0)

-T = (17778, 14222, 10667, 7111.2, 3555.6)

T
(H/B) = (5.0, 5.0, 5.0, 5.0, 5.0)

6 = 1.0535

Final Obj = 3206.2 cu. ft.

-T
HT = (26.05, 24.62, 22.70, 19.83, 15.35)

BT = (0.886, 0.796, 0.733, 0.646, 0.506)

-T
G = (19961, 19904, 19071, 18914, 20111)

T(H/B) = (29.42, 30.92, 30.97, 30.72, 30.32)

6 = 0.9528
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V. CONCLUSIONS

The multiplier method has been shown to be an accurate

and efficient method for solving problems in engineering

design optimization. In the particular cases tested, it

showed comparable or improved performance to other optimiza-

tion methods. In using a finite penalty parameter, c° , the

numerical ill-conditioning of penalty methods is avoided in

most cases. The convergence of the multiplier method is at

least linear while penalty methods converge asymtotically.

Exact solutions are also attainable by the multiplier method.

The ability to handle equality constraints directly makes it

an attractive alternative to CONMIN for the equality con-

strained problem.

The multiplier method has other advantages which make it

attractive. It can be used as an interior or exterior opti-

mization method, i.e., the optimum can be approached from

the feasible or infeasible region. Any reasonable starting

point can be used. The dynamic selection of active constraints

when c=O is also a feature of the multiplier method.

Research of multiplier methods is far from complete. Its

use in the various disciplines of engineering design are

endless. A multiplier algorithm needs to be developed which

is independent of internal computational parameters. The

algorithm needs to be streamlined for easy application by the
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practicing engineer. The specific applications for which

the multiplier method is most attractive need to be identified.

The Augmented Lagrange Multiplier method is an extremely

useful program in computer-aided engineering design. Its

applications today are few, but its possibilities are endless

and invaluable.
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APPENDIX A

ALGORITHM FOR GOLDEN SECTION ONE-DIMENSIONAL SEARCH

The algorithm for the one-dimensional search subprogram

is outlined in this appendix. The one-dimensional search is

first performed by the Golden Section method. A cubic approx-

imation is then performed on the last four values found by

Golden Section method. This approach proved to be very

effective in obtaining an accurate solution. The one-

dimensional search is performed as follows:

Step 1. Specify the initial interval x k and xu, where

x denotes the scalar, a, in Equation 3.1.

Evaluate the functions y. = f(x),Yu = f(x u)

Step 2. Specify the absolute convergence tolerance, Ax.

Calculate the relative convergence tolerance,

s, and the number of function evaluations, N,

from the equations.

= Ax/(Xu-x

N = -2.078 ln(E) + 3

The value N is calculated in floating point

arithmetic and rounded off to the next higher

integer. If N<4, set N=4.

Step 3. Calculate x1 and x2 by the equations

i = (1 - T) x + Tx

x2 = Tx z + ( - r) Xu

where T = (3-/5)/2 = 0.38197
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Evaluate yl= f(x1 ) and y= f(x2).

Step 4: Set counter, K=4. This is because four functions

have already been evaluated. If N=4, go to

Step 9.

Step 5: If Y2 is greater than yI, go to Step 7.

Step 6: yl is greater than or equal to Y2. x, is a new

lower bound. Set:

x =x

1= Y2

yl =Y2

x 2  Tx + (l-T)x

Y2= f(x 2 )

K =K + 1

Go to Step 8.

Step 7: Yz is greater than y1 " x2 is a new upper bound.

Set:

xu 2

x = (1-T)x z + rx

Yl= f(xl)

K =K + 1

Step 8: Check convergence. If K>N, go to Step 9; else

go to Step 5.

Step 9: Do cubic approximation with values x , xI, x2 , xu -

Yc-= f(x2,, xl' X2, Xu)

Step 10: Pick best of y,, yI' Y2' Yc"

Y = min (y., yI' Y2' Yc)

X = corresponding x£, x1 , x2 or xc
Y is the optimum function value at location X. Stop.
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